RSS订阅 加入收藏  设为首页
捕鱼天王
当前位置:首页 > 捕鱼天王

捕鱼天王:谷歌大脑提出概念激活向量,助力神经网络可解释性研究

时间:2019/8/10 16:57:12  作者:  来源:  浏览:0  评论:0
内容摘要: 如前所述,可解释性的一般方法应该是根据深度模型所考虑的输入特征来描述其预测结果。一个经典例子就是 logistic 回归分类器,一般会把分类器中的系数权重解释为每个特征的重要性。但大部分深度学习模型在特征层面(如像素值)的运算,无法和人类能轻易理解的高级概念对应。此外,模型的内...
    如前所述,可解释性的一般方法应该是根据深度模型所考虑的输入特征来描述其预测结果。一个经典例子就是 logistic 回归分类器,一般会把分类器中的系数权重解释为每个特征的重要性。但大部分深度学习模型在特征层面(如像素值)的运算,无法和人类能轻易理解的高级概念对应。此外,模型的内部值(例如神经激活)似乎是无法理解的。尽管像显著性图(saliency map)这样的技术可以有效测量特定像素区域的重要性,但它们无法和更高级的概念相对应。

CAV 的核心思想是度量模型输出中概念的相关性。对概念来说,CAV 是概念示例集的值方向上的一个向量。在他们的论文中,谷歌研究团队还提到了一种名为 TCAV(Testing with CAV)的新型线性可解释性方法,这种方法用方向导数(directional derivatives)来量化模型预测对 CAV 学习到的底层高级概念的敏感度。从概念上讲,定义 TCAV 有以下四个目标:

易于访问:用户几乎不需要 ML 专业知识。

相关评论
本站所有站内信息仅供娱乐参考,不作任何商业用途,不以营利为目的,专注分享快乐,欢迎收藏本站!
所有信息均来自:百度一下 (战神电子)